Performance and microbial community structure in an integrated anaerobic fluidized-bed membrane bioreactor treating synthetic benzothiazole contaminated wastewater.
نویسندگان
چکیده
This study investigated the impact of benzothiazole on the performance and microbial community structures in an integrated anaerobic fluidized-bed membrane bioreactor fed with synthetic benzothiazole wastewater (with gradually increasing doses of benzothiazole (1-50mg/L)). The addition of benzothiazole had an adverse effect on volatile fatty acids accumulation (from 10.86mg/L to 57.83mg/L), and membrane fouling (service period from 5.9d to 5.3d). The removal efficiency of benzothiazole was 96.0%. Biodegradation was the major benzothiazole removal route and the biodegradation efficiency obviously improved from 25.7% to 98.3% after adaptation. Sludge 1 (collected on day 58 without benzothiazole) and sludge 2 (collected on day 185 with 50mg/L benzothiazole) were analyzed using the Illumina®MiSeq platform. The most abundant genera were Trichococcus (43.1% in sludge 1) and Clostridium sensu stricto (23.9% in sludge 2). The dominant genus of archaea was Methanosaeta (90.3% in sludge 1 and 80.8% in sludge 2).
منابع مشابه
Microbial community structure and dynamics in anaerobic fluidized‐bed and granular sludge‐bed reactors: influence of operational temperature and reactor configuration
Methanogenic community structure and dynamics were investigated in two different, replicated anaerobic wastewater treatment reactor configurations [inverted fluidized bed (IFB) and expanded granular sludge bed (EGSB)] treating synthetic dairy wastewater, during operating temperature transitions from 37°C to 25°C, and from 25°C to 15°C, over a 430-day trial. Non-metric multidimensional scaling (...
متن کاملBiodegradation of real petroleum wastewater by immobilized hyper phenol-tolerant strains of Bacillus cereus in a fluidized bed bioreactor
Microbial bioremediation of petroleum wastewater by phenol-degrading-bacteria holds promise in circumventing the issue of petroleum-spill related pollution. Herein, biodegradation of petroleum wastewater samples collected from oil refinery site was carried out in a fluidized bed bioreactor by Ca-alginate immobilized biomass of phenol-degrading strains of Bacillus cereus (AKG1 MTCC9817 and AKG2 ...
متن کاملRemoval of pharmaceuticals and organic matter from municipal wastewater using two-stage anaerobic fluidized membrane bioreactor.
The aim of present study was to treat municipal wastewater in two-stage anaerobic fluidized membrane bioreactor (AFMBR) (anaerobic fluidized bed reactor (AFBR) followed by AFMBR) using granular activated carbon (GAC) as carrier medium in both stages. Approximately 95% COD removal efficiency could be obtained when the two-stage AFMBR was operated at total HRT of 5h (2h for AFBR and 3h for AFMBR)...
متن کاملExpanded granular sludge bed bioreactor in wastewater treatment
The expanded granular sludge bed bioreactor appears today as a cheap, robust and more popular technology because it operates using a fluidized bed, which allows increasing in organic load and in cell retention times, generating higher treatment efficiencies (up to 95 %) and renewable energy (i.e., biogas, biomethane, and biohydrogen). Nevertheless, the efficiency of this bioreactor mainly depen...
متن کاملA Two-Stage Microbial Fuel Cell and Anaerobic Fluidized Bed Membrane Bioreactor (MFC-AFMBR) System for Effective Domestic Wastewater Treatment
Microbial fuel cells (MFCs) are a promising technology for energy-efficient domestic wastewater treatment, but the effluent quality has typically not been sufficient for discharge without further treatment. A two-stage laboratory-scale combined treatment process, consisting of microbial fuel cells and an anaerobic fluidized bed membrane bioreactor (MFC-AFMBR), was examined here to produce high ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Bioresource technology
دوره 236 شماره
صفحات -
تاریخ انتشار 2017